MACHINE LEARNING UC Berkeley Graduate School of Journalism

What is Machine Learning?

Teaching a computer to perform a specific task without using explicit instructions.

Understanding the terms

Classifier

Determining what decision needs to be made based on existing data. The method used for determining the classification. In most machine learning applications, you're building a predictive model, sometimes a decision model.

Model

Training Data

Data that you feed into your model to train it. The decisions or predictions will be made based on this training data. We will evaluate it's effectiveness.

Spam Filtering

Siri

≡ Google Translate								
English▼	•	_ →	Spanish▼					
Tap to en	ter text							
0	<i>a</i>	₽ ₽	Ŷ					
Camera	Handwriting	Conversation	Voice					

Google Translate

Facial Recognition

Advertising

Self-driving cars

News assortment

Social media

Is this email spam?

Using certain attributes in previous emails to determine a binary (true or false) outcome. Is this spam?

Medical detection

Detecting a number of potential diseases that you might have based on examples previously seen. This is called multi-label classification.

Examples of Classifiers

Where can I find true love?

Some models are just about predicting a binary outcome, but rather finding many matches, like facial recognition or online dating. This is called multi-class classification.

Voting patterns and fraud

What attributes does a person have that predicts how they will vote? And can you find outliers when there are few examples? Called imbalanced classification.

Each row represents blood tests from a patient. Some have chronic kidney disease,

and some do not. One column in the data specifies which have kidney disease.

-	click to	scroll output	t; double c	lick to hide	Sugar	Red	Pue Cell	Pus Cell	Bactoria	Glucosa	Blood	Serum	Sodium	Potaecium	Hemoglobin	Packed	W Bl
	Age	Pressure	Gravity		Sugar	Cells	rus ven	clumps	Dacteria	aucose	Urea	Creatinine	Soulum	rotassium	nemogiobin	Volume	Cc
l	48	70	1.005	4	0	normal	abnormal	present	notpresent	117	56	3.8	111	2.5	11.2	32	6
l	53	90	1.02	2	0	abnormal	abnormal	present	notpresent	70	107	7.2	114	3.7	9.5	29	12
l	63	70	1.01	3	0	abnormal	abnormal	present	notpresent	380	60	2.7	131	4.2	10.8	32	4
l	68	80	1.01	3	2	normal	abnormal	present	present	157	90	4.1	130	6.4	5.6	16	11
l	61	80	1.015	2	0	abnormal	abnormal	notpresent	notpresent	173	148	3.9	135	5.2	7.7	24	9
l	48	80	1.025	4	0	normal	abnormal	notpresent	notpresent	95	163	7.7	136	3.8	9.8	32	6
l	69	70	1.01	3	4	normal	abnormal	notpresent	notpresent	264	87	2.7	130	4	12.5	37	9
l	73	70	1.005	0	0	normal	normal	notpresent	notpresent	70	32	0.9	125	4	10	29	18
l	73	80	1.02	2	0	abnormal	abnormal	notpresent	notpresent	253	142	4.6	138	5.8	10.5	33	7
L	46	60	1.01	1	0	normal	normal	notpresent	notorocont	162	02	2.2	1.41	A	0.9	29	14

Classifying Medical Data

Class 0 means no kidney disease Class 1 means they have kidney disease

ckd.g	ro
Class	co
0	
1	

up(Class')
ount	
115	
43	

Look for clustering in the data

Look for clustering in the data

Nearest Neighbor Classifier

Find the points that are closest to the new data point to make a determination of whether it's a good candidate for either classification.

Find the five nearest neighbors

Locate the nearest points classification and create a boundary.

Decision Boundaries

Take an average of the five nearest points to smooth out the boundary.

Decision Boundaries

Detecting Counterfeit Banknotes

WaveletVar	WaveletSkew	WaveletCurt	Entropy	Class			
3.6216	8.6661	-2.8073	-0.44699	0			
4.5459	8.1674	-2.4586	-1.4621	0			
3.866	-2.6383	1.9242	0.10645	0			
3.4566	9.5228	-4.0112	-3.5944	0			
0.32924	-4.4552	4.5718	-0.9888	0			
4.3684	9.6718	-3.9606	-3.1625	0			
3.5912	3.0129	0.72888	0.56421	0			
2.0922	-6.81	8.4636	-0.60216	0			
3.2032	5.7588	-0.75345	-0.61251	0			
1.5356	9.1772	-2.2718	-0.73535	0			
(1362 rows omitted)							

Counterfeit Banknotes

Finding distance between two points.

$$D = \sqrt{(x_0 - x_1)^2 + (y_0 - y_1)^2}.$$

Finding distance between three points.

$$D=\sqrt{(x_0-x_1)^2+(y_0-y_1)^2+(z_0-z_1)^2}$$

17-year-old Brittany Wenger won Google Science Fair for building a computer program doctors use for Breast Cancer Detection

Leveraging the computing power of the cloud to assist with medical diagnosis can become an effective tool for doctors to provide more consistent and reliable care. Artificial neural networks detect patterns too complex to be recognized by humans and can be applied to breast mass malignancy classification when evaluating Fine Needle Aspirates (FNAs). This project teaches the cloud how to diagnose breast cancer by implementing a custom-crafted neural network that consumes FNA data collected by the University of Wisconsin to answer the question - is a mass malignant or benign?

Medical usage demands neural networks achieve accuracy with their diagnosis and reduce malignant false negatives. Building on data collected by the University of Wisconsin in the early 1990s, this project first evaluates three modern commercial neural network implementations. Information regarding potential indicators of breast

Global Neural Network Cloud Service for Breast Cancer

By Brittany Wenger

Google Slides

Global Neural Network Cloud Service for Breast Cancer http://cloud4cancer.appspot.com

Clump Thickness	Uniformity of Cell Size	Uniformity of Cell Shape	Marginal Adhesion	Single Epithelial Cell Size	Bare Nuclei	Bland Chromatin	Normal Nucleoli	Mitoses	Class
5	1	1	1	2	1	3	1	1	0
5	4	4	5	7	10	3	2	1	0
3	1	1	1	2	2	3	1	1	0
6	8	8	1	3	4	3	7	1	0
4	1	1	3	2	1	3	1	1	0
8	10	10	8	7	10	9	7	1	1
1	1	1	1	2	10	3	1	1	0
2	1	2	1	2	1	3	1	1	0
2	1	1	1	2	1	1	1	5	C
4	2	1	1	2	1	2	1	1	C

Problems with Machine Learning

Machine Bias

There's software used across the country to predict future criminals. And it's biased against blacks.

> by Julia Angwin, Jeff Larson, Surya Mattu and Lauren Kirchner, ProPublica May 23, 2016

N A SPRING AFTERNOON IN 2014, Brisha Borden was running late to pick up her god-sister from school when she spotted an unlocked kid's blue Huffy bicycle and a silver Razor scooter. Borden

https://www.propublica.org/series/machine-bias

Bernard Parker, left, was rated high risk; Dylan Fugett was rated low risk. (Josh Ritchie for ProPublica)

Northpointe's core product is a set of scores derived from <u>137 questions</u> that are either answered by defendants or pulled from criminal records. Race is not one of the questions. The survey asks defendants such things as: **"Was one of your**" parents ever sent to jail or prison?" "How many of your friends/ acquaintances are taking drugs illegally?" and "How often did you get in fights while at school?" The questionnaire also asks people to agree or disagree with statements such as "A hungry person has a right to steal" and "If people make me angry or lose my temper, I can be dangerous."

Two Petty Theft Arrests

Borden was rated high risk for future crime after she and a friend took a kid's bike and scooter that were sitting outside. She did not reoffend.

Two Drug Possession Arrests

Fugett was rated low risk after being arrested with cocaine and marijuana. He was arrested three times on drug charges after that.

Black Defendants' Risk Scores

White Defendants' Risk Scores

These charts show that scores for white defendants were skewed toward lower-risk categories. Scores for black defendants were not. (Source: ProPublica analysis of data from Broward County, Fla.)

"All models are wrong but some are useful"

— George Box, famed statistician in 1978

kWh

Machine learning is almost never 100% accurate.

Accuracy in Machine Learning

80%

Facebook tries to determine if you're in the photo. Not so much penalty if it's wrong.

Self-driving cars

A misinterpretation by the computer could have disastrous consequences.

Neural Network Machine Learning

https://youtu.be/wFTmQ27S7OQ?t=4092

APPLES

BANANAS

ORANGES

https://youtu.be/aircAruvnKk?t=303

Machine Learning Process

Lots of examples as input

Each example records certain attributes, so we can design a classifier.

Look for patterns

Any machine learning algorithm looks for patterns in the data, like clusters in a scatter chart.

Make predictions

The final step is to forecast results based on new inputs.

4

Test results

Evaluate the results to see how accurate they were, and adjust the algorithm based on success.

How does a machine "learn"?

GATHERING lots of data, recording various attributes

The more data you have, the more accurate your system will be. **TRAINING** data to look for specific groupings, correlations in the data. Look for how data clusters around certain areas, and what other pieces of data correlate to that. based on similar characteristics. **EVALUATING** and testing effectiveness

PREDICTING a new piece of datum Machine learning is about predicting outcomes based on historical data.

for improvement.

We evaluate how accurate our predictions are, and create a confidence score. And use those predictions to feed back into the system to improve it.

Lentil, Apple, and Turke Boudin Blanc Terrine with Red Onior Potato and Fennel Soup Spinach Noodle Ca Korean Marinate Ham Persillade with Mustard Potato Salad Yams Braised with Cream, Rosemary and Banana-Chocolate Chip Cake With Peanut E Beef Tenderloin with Garlic and Peach Raw Cream of Spinad Sweet Buttermilk Spoon Mozzarella-Topped Peppers with Tomatoes an Tuna, Asparagus, and New Potato Salad wi Asian Pear and Watercress Salad with Sesa

title	calories	protein	fat	sodium	rating	
ey Wrap	426	30	7	559	2.500	
on Confit	403	18	23	1439	4.375	
o Hodge	165	6	7	165	3.750	
asserole	547	20	32	452	3.125	
ted Beef	170	7	10	1272	4.375	
and M	602	23	41	1696	3.750	
Nutmeg	256	4	5	30	3.750	
Butter	766	12	48	439	4.375	
l Brandy	174	11	12	176	4.375	
Mustard	134	4	3	1394	3.125	
ch Soup	382	5	31	977	4.375	
Breads	146	4	5	160	1.875	
nd Ga	107	5	7	344	5.000	
ith Chi	421	10	33	383	5.000	
ame Dr	345	11	19	423	4.375	

Lentil, Apple, and Turke Boudin Blanc Terrine with Red Onior Potato and Fennel Soup Spinach Noodle Ca Korean Marinat Ham Persillade with Mustard Potato Salad Yams Braised with Cream, Rosemary and Banana-Chocolate Chip Cake With Peanut E Beef Tenderloin with Garlic and Peach | Raw Cream of Spinad Sweet Buttermilk Spoon Mozzarella-Topped Peppers with Tomatoes an Tuna, Asparagus, and New Potato Salad with Asian Pear and Watercress Salad with Sesa

title	calories	protein	fat	sodium	rating	
ey Wrap	426	30	7	559	2.500	
n Confit	403	18	23	1439	4.375	
o Hodge	165	6	7	165	3.750	
asserole	547	20	32	452	3.125	
ted Beef	170	7	10	1272	4.375	
and M	602	23	41	1696	3.750	
Nutmeg	256	4	5	30	3.750	
Butter	766	12	48	439	4.375	
l Brandy	174	11	12	176	4.375	
Mustard	134	4	3	1394	3.125	
ch Soup	382	5	31	977	4.375	
Breads	146	4	5	160	1.875	
nd Ga	107	5	7	344	5.000	
ith Chi	421	10	33	383	5.000	
ime Dr	345	11	19	423	4.375	

We're going to use these

Lentil, Apple, and Turke Boudin Blanc Terrine with Red Onior Potato and Fennel Soup Spinach Noodle Ca Korean Marinate Ham Persillade with Mustard Potato Salad Yams Braised with Cream, Rosemary and Banana-Chocolate Chip Cake With Peanut E Beef Tenderloin with Garlic and Peach Raw Cream of Spinad Sweet Buttermilk Spoon Mozzarella-Topped Peppers with Tomatoes an Tuna, Asparagus, and New Potato Salad wi Asian Pear and Watercress Salad with Sesa

title	calories	protein	fat	sodium	rating
ey Wrap	426	30	7	559	2.500
n Confit	403	18	23	1439	4.375
b Hodge	165	6	7	165	3.750
asserole	547	20	32	452	3.125
ed Beef	170	7	10	1272	4.375
and M	602	23	41	1696	3.750
Nutmeg	256	4	5	30	3.750
Butter	766	12	48	439	4.375
Brandy	174	11	12	176	4.375
Mustard	134	4	3	1394	3.125
ch Soup	382	5	31	977	4.375
Breads	146	4	5	160	1.875
nd Ga	107	5	7	344	5.000
ith Chi	421	10	33	383	5.000
me Dr	345	11	19	423	4.375

to predict these

Step 1 - Separate our data

calories	protein	fat	sodium	rating
426	30	7	559	2.500
403	18	23	1439	4.375
165	6	7	165	3.750
547	20	32	452	3.125
170	7	10	1272	4.375
602	23	41	1696	3.750
256	4	5	30	3.750
766	12	48	439	4.375
174	11	12	176	4.375
134	4	3	1394	3.125
382	5	31	977	4.375
146	4	5	160	1.875
107	5	7	344	5.000
421	10	33	383	5.000
345	11	19	423	4.375

Step 1 - Separate our data

calories	protein	fat	sodium	rating
426	30	7	559	2.500
403	18	23	1439	4.375
165	6	7	165	3.750
547	20	32	452	3.125
170	7	10	1272	4.375
602	23	41	1696	3.750
256	4	5	30	3.750
766	12	48	439	4.375
174	11	12	176	4.375
134	4	3	1394	3.125
382	5	31	977	4.375
146	4	5	160	1.875
107	5	7	344	5.000
421	10	33	383	5.000
345	11	19	423	4.375

Training Data

Testing Data

calories	protein	fat	sodium
426	30	7	559
403	18	23	1439
165	6	7	165
547	20	32	452
170	7	10	1272
602	23	41	1696
256	4	5	30
766	12	48	439
174	11	12	176
134	4	3	1394

382	5	31	977	4.375
146	4	5	160	1.875
107	5	7	344	5.000
421	10	33	383	5.000
345	11	19	423	4.375

Training Data

We only use training data to build our model (classifier)

Testing Data

calories	protein	fat	sodium
426	30	7	559
403	18	23	1439
165	6	7	165
547	20	32	452
170	7	10	1272
602	23	41	1696
256	4	5	30
766	12	48	439
174	11	12	176
134	4	3	1394

382	5	31	977
146	4	5	160
107	5	7	344
421	10	33	383
345	11	19	423

Training Data

We only use training data to build our model (classifier)

 4.375
1.875
5.000
5.000
4.375

Testing Data

Then we input some of our test data to see if we get the correct result.

calories	protein	fat	sodium
426	30	7	559
403	18	23	1439
165	6	7	165
547	20	32	452
170	7	10	1272
602	23	41	1696
256	4	5	30
766	12	48	439
174	11	12	176
134	4	3	1394

X_train

382	5	31	977
146	4	5	160
107	5	7	344
421	10	33	383
345	11	19	423

y_train

	rating
	2.500
	4.375
	3.750
	3.125
X_test	4.375
	3.750
	3.750
	4.375
	4.375
	3.125

Training Data

y_test	4.375
	1.875
	5.000
	5.000
	4.375

Testing Data

